Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.

Identifieur interne : 000130 ( Main/Exploration ); précédent : 000129; suivant : 000131

Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.

Auteurs : Xiangxiong Deng [République populaire de Chine] ; Xuwen Xu [République populaire de Chine] ; Yu Liu [République populaire de Chine] ; Yan Zhang [République populaire de Chine] ; Liuyi Yang [République populaire de Chine] ; Shuqun Zhang [États-Unis] ; Juan Xu [République populaire de Chine]

Source :

RBID : pubmed:32458527

Abstract

Gamma-aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen-responsive mitogen-activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst-avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst-avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst-avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst-avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.

DOI: 10.1111/jipb.12974
PubMed: 32458527


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.</title>
<author>
<name sortKey="Deng, Xiangxiong" sort="Deng, Xiangxiong" uniqKey="Deng X" first="Xiangxiong" last="Deng">Xiangxiong Deng</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xuwen" sort="Xu, Xuwen" uniqKey="Xu X" first="Xuwen" last="Xu">Xuwen Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yu" sort="Liu, Yu" uniqKey="Liu Y" first="Yu" last="Liu">Yu Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yan" sort="Zhang, Yan" uniqKey="Zhang Y" first="Yan" last="Zhang">Yan Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Liuyi" sort="Yang, Liuyi" uniqKey="Yang L" first="Liuyi" last="Yang">Liuyi Yang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shuqun" sort="Zhang, Shuqun" uniqKey="Zhang S" first="Shuqun" last="Zhang">Shuqun Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biochemistry, University of Missouri, Columbia, Missouri, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Juan" sort="Xu, Juan" uniqKey="Xu J" first="Juan" last="Xu">Juan Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32458527</idno>
<idno type="pmid">32458527</idno>
<idno type="doi">10.1111/jipb.12974</idno>
<idno type="wicri:Area/Main/Corpus">000244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000244</idno>
<idno type="wicri:Area/Main/Curation">000244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000244</idno>
<idno type="wicri:Area/Main/Exploration">000244</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.</title>
<author>
<name sortKey="Deng, Xiangxiong" sort="Deng, Xiangxiong" uniqKey="Deng X" first="Xiangxiong" last="Deng">Xiangxiong Deng</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xuwen" sort="Xu, Xuwen" uniqKey="Xu X" first="Xuwen" last="Xu">Xuwen Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yu" sort="Liu, Yu" uniqKey="Liu Y" first="Yu" last="Liu">Yu Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yan" sort="Zhang, Yan" uniqKey="Zhang Y" first="Yan" last="Zhang">Yan Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Liuyi" sort="Yang, Liuyi" uniqKey="Yang L" first="Liuyi" last="Yang">Liuyi Yang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shuqun" sort="Zhang, Shuqun" uniqKey="Zhang S" first="Shuqun" last="Zhang">Shuqun Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biochemistry, University of Missouri, Columbia, Missouri, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Juan" sort="Xu, Juan" uniqKey="Xu J" first="Juan" last="Xu">Juan Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of integrative plant biology</title>
<idno type="eISSN">1744-7909</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gamma-aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen-responsive mitogen-activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst-avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst-avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst-avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst-avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32458527</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1744-7909</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>62</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of integrative plant biology</Title>
<ISOAbbreviation>J Integr Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.</ArticleTitle>
<Pagination>
<MedlinePgn>1797-1812</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/jipb.12974</ELocationID>
<Abstract>
<AbstractText>Gamma-aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen-responsive mitogen-activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst-avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst-avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst-avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst-avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Xiangxiong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xuwen</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Liuyi</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shuqun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Natural Science Foundation of Zhejiang Province</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Young Elite Scientist Sponsorship Program by CAST</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>111 Project</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>China (Republic : 1949- )</Country>
<MedlineTA>J Integr Plant Biol</MedlineTA>
<NlmUniqueID>101250502</NlmUniqueID>
<ISSNLinking>1672-9072</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32458527</ArticleId>
<ArticleId IdType="doi">10.1111/jipb.12974</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Akihiro T, Koike S, Tani R, Tominaga T, Watanabe S, Iijima Y, Aoki K, Shibata D, Ashihara H, Matsukura C, Akama K, Fujimura T, Ezura H (2008) Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol 49: 1378-1389</Citation>
</Reference>
<Reference>
<Citation>Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem 268: 19610-19617</Citation>
</Reference>
<Reference>
<Citation>Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15: 2988-2996</Citation>
</Reference>
<Reference>
<Citation>Birkenbihl RP, Kracher B, Roccaro M, Somssich IE (2017) Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity. Plant Cell 29: 20-38</Citation>
</Reference>
<Reference>
<Citation>Bouché N, Fait A, Zik M, Fromm H (2004) The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol 55: 315-325</Citation>
</Reference>
<Reference>
<Citation>Bouche N, Fromm H (2004) GABA in plants: Just a metabolite? Trends Plant Sci 9: 110-115</Citation>
</Reference>
<Reference>
<Citation>Bouche N, Lacombe B, Fromm H (2003) GABA signaling: A conserved and ubiquitous mechanism. Trends Cell Biol 13: 607-610</Citation>
</Reference>
<Reference>
<Citation>Bown AW, Macgregor KB, Shelp BJ (2006) Gamma-aminobutyrate: Defense against invertebrate pests? Trends Plant Sci 11: 424-427</Citation>
</Reference>
<Reference>
<Citation>Bown AW, Shelp BJ (1997) The metabolism and functions of gamma-aminobutyric acid. Plant Physiol 115: 1-5</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Baum G, Fromm H (1994) The 58-kilodalton calmodulin-binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated. Plant Physiol 106: 1381-1387</Citation>
</Reference>
<Reference>
<Citation>Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103: 7460-7464</Citation>
</Reference>
<Reference>
<Citation>Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743</Citation>
</Reference>
<Reference>
<Citation>Doczi R, Bogre L (2018) The quest for MAP kinase substrates: Gaining momentum. Trends Plant Sci 23: 918-932</Citation>
</Reference>
<Reference>
<Citation>Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: The metabolic role of the GABA shunt in plants. Trends Plant Sci 13: 14-19</Citation>
</Reference>
<Reference>
<Citation>Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR (2011) Targeted enhancement of glutamate-to-gamma-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol 157: 1026-1042</Citation>
</Reference>
<Reference>
<Citation>Guan R, Su J, Meng X, Li S, Liu Y, Xu J, Zhang S (2015) Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae. Plant Physiol 169: 299-312</Citation>
</Reference>
<Reference>
<Citation>Han X, Li S, Zhang M, Yang L, Liu Y, Xu J, Zhang S (2019) Regulation of GDSL lipase gene expression by the MPK3/MPK6 cascade and its downstream WRKY transcription factors in Arabidopsis immunity. Mol Plant Microbe Interact 32: 673-684</Citation>
</Reference>
<Reference>
<Citation>Hildebrandt TM, Nunes Nesi A, Araujo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8: 1563-1579</Citation>
</Reference>
<Reference>
<Citation>Le Boucher J, Charret C, Coudray-Lucas C, Giboudeau J, Cynober L (1997) Amino acid determination in biological fluids by automated ion-exchange chromatography: Performance of Hitachi L-8500A. Clin Chem 43: 1421-1428</Citation>
</Reference>
<Reference>
<Citation>Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8: e1002767</Citation>
</Reference>
<Reference>
<Citation>Li Z, Yong B, Cheng B, Wu X, Zhang Y, Zhang X, Peng Y (2019) Nitric oxide, gamma-aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress. J Integr Plant Biol 61: 1255-1273</Citation>
</Reference>
<Reference>
<Citation>Liu YD, Zhang SQ (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386-3399</Citation>
</Reference>
<Reference>
<Citation>Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23: 1639-1653</Citation>
</Reference>
<Reference>
<Citation>McCraw SL, Park DH, Jones R, Bentley MA, Rico A, Ratcliffe RG, Kruger NJ, Collmer A, Preston GM (2016) GABA (gamma-aminobutyric acid) uptake via the GABA permease GabP represses virulence gene expression in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 29: 938-949</Citation>
</Reference>
<Reference>
<Citation>Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51: 245-266</Citation>
</Reference>
<Reference>
<Citation>Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KA, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63: 1054-1062</Citation>
</Reference>
<Reference>
<Citation>Michaeli S, Fromm H (2015) Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined? Front Plant Sci 6: 419</Citation>
</Reference>
<Reference>
<Citation>Miyashita Y, Good AG (2008) Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol 49: 92-102</Citation>
</Reference>
<Reference>
<Citation>Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114: 47-59</Citation>
</Reference>
<Reference>
<Citation>Park DH, Mirabella R, Bronstein PA, Preston GM, Haring MA, Lim CK, Collmer A, Schuurink RC (2010) Mutations in gamma-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant J 64: 318-330</Citation>
</Reference>
<Reference>
<Citation>Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12: 421-426</Citation>
</Reference>
<Reference>
<Citation>Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S, Feijo JA, Ryan PR, Gilliham M (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6: 7879</Citation>
</Reference>
<Reference>
<Citation>Ren DT, Liu YD, Yang KY, Han L, Mao GH, Glazebrook J, Zhang SQ (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105: 5638-5643</Citation>
</Reference>
<Reference>
<Citation>Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C (2013) Gamma-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ 36: 1009-1018</Citation>
</Reference>
<Reference>
<Citation>Renault H, El Amrani A, Palanivelu R, Updegraff EP, Yu A, Renou JP, Preuss D, Bouchereau A, Deleu C (2011) GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Plant Cell Physiol 52: 894-908</Citation>
</Reference>
<Reference>
<Citation>Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61: 621-649</Citation>
</Reference>
<Reference>
<Citation>Seifi HS, Curvers K, De Vleesschauwer D, Delaere I, Aziz A, Hofte M (2013) Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol 199: 490-504</Citation>
</Reference>
<Reference>
<Citation>Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4: 446-452</Citation>
</Reference>
<Reference>
<Citation>Shelp BJ, Mullen RT, Waller JC (2012) Compartmentation of GABA metabolism raises intriguing questions. Trends Plant Sci 17: 57-59</Citation>
</Reference>
<Reference>
<Citation>Solomon PS, Oliver RP (2001) The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213: 241-249</Citation>
</Reference>
<Reference>
<Citation>Solomon PS, Oliver RP (2002) Evidence that gamma-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214: 414-420</Citation>
</Reference>
<Reference>
<Citation>Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, Zhang S (2018) Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol 16: e2004122</Citation>
</Reference>
<Reference>
<Citation>Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29. 562-542</Citation>
</Reference>
<Reference>
<Citation>Sun X, Zhu A, Liu S, Sheng L, Ma Q, Zhang L, Nishawy EM, Zeng Y, Xu J, Ma Z, Cheng Y, Deng X (2013) Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. J Integr Plant Biol 55: 1038-1053</Citation>
</Reference>
<Reference>
<Citation>Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14: 519-529</Citation>
</Reference>
<Reference>
<Citation>Tsuda K, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, Glazebrook J, Sato M, Katagiri F (2013) Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet 9: e1004015</Citation>
</Reference>
<Reference>
<Citation>Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63-73</Citation>
</Reference>
<Reference>
<Citation>Yap KL, Yuan T, Mal TK, Vogel HJ, Ikura M (2003) Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. J Mol Biol 328: 193-204</Citation>
</Reference>
<Reference>
<Citation>Yu G, Liang J, He Z, Sun M (2006) Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13: 723-731</Citation>
</Reference>
<Reference>
<Citation>Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX (2014) Exogenous gamma-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J Exp Bot 65: 3235-3248</Citation>
</Reference>
<Reference>
<Citation>Zhang M, Su J, Zhang Y, Xu J, Zhang S (2018) Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol 45: 1-10</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Deng, Xiangxiong" sort="Deng, Xiangxiong" uniqKey="Deng X" first="Xiangxiong" last="Deng">Xiangxiong Deng</name>
</region>
<name sortKey="Liu, Yu" sort="Liu, Yu" uniqKey="Liu Y" first="Yu" last="Liu">Yu Liu</name>
<name sortKey="Xu, Juan" sort="Xu, Juan" uniqKey="Xu J" first="Juan" last="Xu">Juan Xu</name>
<name sortKey="Xu, Xuwen" sort="Xu, Xuwen" uniqKey="Xu X" first="Xuwen" last="Xu">Xuwen Xu</name>
<name sortKey="Yang, Liuyi" sort="Yang, Liuyi" uniqKey="Yang L" first="Liuyi" last="Yang">Liuyi Yang</name>
<name sortKey="Zhang, Yan" sort="Zhang, Yan" uniqKey="Zhang Y" first="Yan" last="Zhang">Yan Zhang</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhang, Shuqun" sort="Zhang, Shuqun" uniqKey="Zhang S" first="Shuqun" last="Zhang">Shuqun Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32458527
   |texte=   Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32458527" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020